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Abstract- Passive circumferential and axial mechanical properties 
of porcine coronary arteries and internal mammary arteries 
(IMA) were measured and compared. The cylindrical specimens 
were subjected to axial stretch and internal pressures up to 300 
mmHg. Stress-strain relations of the arteries were calculated from 
the measured data and compared.  It was found that the stresses in 
the IMA were much higher and that the IMA is stiffer than the 
coronary artery, especially in the circumferential direction. The 
axial stress in the coronary artery increased substantially after 
axial stretching, this in contrast to the axial stress in the IMA.  
Keywords- coronary artery, internal mammary artery, stress, 
strain, bypass 

 
I. INTRODUCTION 

 
Coronary artery bypass surgery is changing recently. Surgery 
on the beating heart with local mechanical stabilizers is 
practiced in 15-20 % of the cases worldwide. Tele-
manipulation systems are introduced that allow surgeons to 
explore minimally invasive coronary surgery [1]. These 
developments will require new techniques for coronary artery 
bypass grafting because of limited access and space. Many 
patents of facilitated anastomotic techniques show the use of 
anvils and other microstructures [2]. Applying such techniques 
often causes extreme deformations in the arterial wall of both 
donor and recipient vessel and this could lead to severe damage 
of arterial wall structures. These extreme deformations can 
initiate intimal hyperplasia, which could eventually lead to 
stenosis of the anastomosis. Therefore it is important to know 
more about the mechanical properties of arteries involved in 
coronary artery bypass surgery. We investigated the main 
coronary arteries and a graft, the IMA, because of its good 
clinical results [3]. 
 

II. METHODOLOGY 

 
For this study the vessels of 13 healthy Landrace pigs 

(weight 70-90 kg) were used. The animals were sacrificed in 
the course of other experiments. A total of 8 cylindrical 
segments of coronary arteries and 6 segments of the IMA were 
harvested. All arteries were measured within 24 hours after 
termination. The coronary arteries were removed from the 
hearts, all side branches were carefully closed with small clips. 
Surrounding tissue and loose adventitial fibers were removed. 
The mechanical properties were measured by subjecting the 
arterial segments to inflation and axial tension in an 
experimental setup. Both ends of each arterial segment were 
connected to metallic cannulae with sutures. The cannulae were 
connected to a tensile testing machine with which both the axial 
lengthening of the segment could be regulated and the axial 

force was measured. In general, a segment of a vessel shortens 
after removal from the surrounding tissue. To approximate their 
original length, the arteries were given pre-stretches in the axial 
direction. The upper cannula was closed and the lower cannula 
was connected to a reservoir with Tyrode solution (in mM: 
NaCl 140; KCl 4.9; MgSO4 1.2; NaH2PO4 1.8 and Hepes 5). 
The cannulated segment was placed in a small chamber with 
parallel glass walls, which was filled with the same Tyrode 
solution at a constant temperature of 37 0C. A dual beam laser-
micrometer was placed around the glass chamber with two 
beams pointing at the middle section of the arterial segment at 
an angle of 900. The laser device measured the external 
diameter of the artery during inflation with both beams 
simultaneously and calculated the average diameter, correcting 
for oval shaped segments. The inflation of the artery with 
Tyrode solution was pressure regulated within a range of 0-300 
mmHg. The pressure was elevated from 0-100 mmHg with 
incremental steps of 10 mmHg and from 100-300 mmHg with 
incremental steps of 20 mmHg. To establish a more constant 
mechanical response, the arteries were preconditioned before 
the experiment by elevating the pressure to 200 mmHg for 5 
times. 

Before the experiment, the length L of the unloaded vessel 
was measured with a caliper. After the tests, a ring segment was 
taken out of each artery at the spot where the diameter was 
measured by the laser. By taking digital pictures from the 
microscopic images of these rings, the unloaded external 
diameter D, mid-wall radius R and wall thickness H could be 
measured with a computer. At several axial lengths l, the 
external diameter d and axial force f were measured as a 
function of rising pressure p. Assuming arterial wall 
incompressibility, the current mid-wall radius r and the wall 
thickness h could be computed. The collected data were used to 
calculate the Green-Langrange strains (Eθ ,Ez) and the second 
Piola-Kirchhoff stresses (Sθ ,Sz) in the circumferential (θ) and 
axial (z) directions. 

The strains are given by, 

 
with λθ =r/R and λz =l/L being the principal stretch ratios in the 
circumferential and axial directions for the middle surface of 
the vessel wall.  

The stresses are 
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with σθ and σz the true stresses in the circumferential and axial 
directions,  

 
III. RESULTS 

 
The average initial external diameter of the coronary arteries 

was 3.39 ± 0.38 mm and the average initial wall thickness 0.71 
± 0.16 mm, for the IMA these dimensions were respectively 
3.39 ± 0.46 mm and 0.35 ± 0.07 mm.  Because of the 
corresponding external diameter these vessels make a good fit 
in a bypass procedure. Fig. 1 shows the areas in which the 
circumferential stress-strain relations of all the measured 
specimens were situated for an axial stretch of λz=1.3. The 
axial stress versus the circumferential strain relation for all 
specimens at the same stretch λz=1.3, is given in fig. 2. For 
both arteries, increasing the axial segment length with 30 % 
approximated the in vivo length. The non-linearity of the stress-
strain relationships is obvious. The strongest increase of the 
stress started at pressures of approximately 100 mmHg. The 
results show that the stresses in the IMA were much higher than 
in the coronary artery, especially in the circumferential 
direction. The slopes of the curves, which are an indication for 
the stiffness of the material, show that the IMA is stiffer than 
the coronary artery. Notice the difference of the shape of the 
curves for both types of arteries. The elastic IMA shows a “S”-
shaped stress-strain relation in the circumferential direction, 
which is not the case for the muscular coronary artery. Fig. 3 
shows the typical stress-strain relationship in circumferential 
direction of one coronary artery at increasing values of axial 
stretch. With increasing axial length, the circumferential wall 
stress tends to rise slightly. In fig. 4 the axial stress is displayed 
in relation to the circumferential strain for the same coronary 
artery. The axial stress shows a much stronger increase as a 
result of the axial stretching. Fig. 5 displays the circumferential 
stress as a function of the circumferential strain for an IMA. 
Higher axial stretching has not much effect on the 
circumferential stress level. In contrast to the coronary artery, 

the axial stress in the IMA, as depicted in fig. 6, is hardly rising 
at higher levels of axial stretch.  

 
IV. DISCUSSION 

 

The coronary artery and the IMA are anatomically different 
blood vessels. The coronary artery is an artery of the muscular 
type, which means that the media consists mainly of smooth 
muscle cells. The IMA is an elastic artery, the media contains 
many elastic fibers. The mechanical characteristics of these 
vessels are determined by its components and the structural 
interrelationship between the components. Although the IMA is 
classified as an elastic artery, the stress-strain results in the pig 
show that it is actually stiffer than the coronary artery. It should 
be taken into consideration though, that these experiments were 
performed on healthy arteries. Bypass surgery is performed on 
patients with atherosclerotic coronary arteries, which may be 
substantially stiffer than the healthy porcine coronary arteries. 
 
 

V. CONCLUSIONS 

 
The experiments showed that the circumferential and axial 

mechanical properties of the porcine coronary arteries and the 
IMA’s are different. The IMA is much stiffer than the coronary 
artery, especially in the circumferential direction of the vessel 
wall in the lower pressure range. In the higher pressure range, 
the circumferential stress level in the IMA is much higher than 
in the coronary artery. Axial stretching has the largest effect on 
the axial stress in the coronary arteries. The results of these 
experiments will be used for simulations. By means of finite 
element analysis, situations of extreme deformation of these 
arteries can be modeled. Further investigations are necessary to 
determine whether the arterial wall is actually permanently 
damaged by such high wall stresses.  
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Fig. 1. Areas in which the circumferential stress-strain relations 
exist for all measured arteries at axial pre-stretch λz=1.3. 
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Fig. 3.  Circumferential stress versus circumferential strain 
for a coronary artery at different axial stretches (Markers 

indicate the pressure steps). 

0

2

4

6

8

10

12

14

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
Circumferential Green-Lagrange strain Eθ

C
ir

cu
m

fe
re

n
tia

l P
io

la
-K

ir
ch

h
o

ff 
st

re
ss

 S
θ 

(1
04

 N
/m

2
)

   z=1,25

   z=1,3

   z=1,4

   z=1,5

λ Coronary Artery

λ
λ
λ

Fig. 4. Axial stress versus circumferential strain for a 
coronary artery at different axial stretches. 
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Fig. 5. Circumferential stress versus circumferential strain for
an internal mammary artery at different axial stretches. 
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Fig. 6. Axial stress versus circumferential strain for an internal 
mammary artery at different axial stretches. 
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